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METHOD FOR DETERMINATION OF THE ACCURACY OF CLOSED DISTANT
STATIONARY ORBITS DETERMINED FROM RANGE RATE*

By Alton P. Mayo
Langley Research Center

SUMMARY

Orbit-determination-accuracy procedures were derived for inertially fixed orbits
about distant bodies. This condition is realized only for binary stars but it is closely
approximated over short time periods for orbits about the moon and the planets. Analy-
sis of the results computed by using the stationary-orbit techniques would be indicative
of the orbit-determination results computed by using short data arcs on slowly varying
orbits.

Analytic expressions for uncertainty in the orbit parameters were derived by
assuming that a measurement was made every degree of true anomaly. These expres-
sions could be used for other measurement schedules by application of a correction given
by the inverse square root of the number of observations. The equations, as presented,
are fairly brief and are applicable to short-arc orbit-determination accuracy, linearity,
and convergence studies.

INTRODUCTION

Since a basic requirement for any space mission is that the orbit of the spacecraft
be known, considerable attention has been given in the past decade to procedures for orbit
determination. The basic data used in the procedures for computing the orbit are mea-
surements made by an Earth based tracking system or measurements made by an onboard
navigator. The computed estimates of the spacecraft position and velocity are always
erroneous; the degree of error depends mainly on the type and accuracy of the measure-~
ments. It is standard practice to consider these factors in the orbit-determination pro-
cess and to provide statistical data on the sizes of the errors that could possibly exist in
the computed spacecraft position and velocity.

*Part of the information presented herein was included in a thesis entitled ""Accu-
racy of a Heliocentric Space Metric as Determined From Earth-Based Tracking' offered
in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Virginia
Polytechnic Institute, Blacksburg, Virginia, December 1968.



The accuracy of the prediction of future positions and velocities of the spacecraft
and the accuracy to which the spacecraft can be controlled both depend on the orbit-
determination accuracy. The planet's mass, the solar pressure, and relativistic effects,
among other things, can be determined from measurements of the orbit. The accuracy
of determination of these parameters is also basically related to the orbit-determination
accuracy. Many studies have been made of the procedures for computing orbit-
determination accuracy. Complete and lengthy numerical procedures have been developed
for both interplanetary and orbital flight. Shorter analytic approximations have been
developed for the interplanetary and planetary approach phases of the missions. (See
refs. 1 and 2.)

Analytic solutions have the advantage of bringing out the parameters which affect
the orbit-determination accuracy and contribute to an understanding of the problem which
is more obscured in the lengthy numerical procedures. Analytic solutions are also sim-
pler and more rapid to compute. In this paper, analytic approximations for the accuracy
of orbit determination are developed for the case where the spacecraft is in a stationary
closed orbit about a very distant planet and an Earth based tracker makes range rate mea-
surements to the spacecraft. The results are derived from the classical binary-star
orbit-determination technique which was developed decades ago in order to determine the
orbits of binary stars from spectroscopic data.

The accuracy of orbit determination is directly influenced by the errors of the
tracking system. In this paper random uncorrelated errors are considered to exist in
the range rate measurements. The orbit-determination accuracies are obtained for two
cases where (1) the range rate measurements are made at prespecified values of true
anomaly and (2) the range rate measurements are made at prespecified values of time.

An example application of the procedures derived in the paper is given for an orbit
about the planet Mars. The content of this paper is essentially an expansion of part of

reference 3.

SYMBOLS
a semimajor axis of orbit
a orbit parameter, na sini
Aj,Bj orbit parameters, where j=1,2,. . .,6 (see egs. (12) to (16) and eq. (47))
A5 parameter in equation (42)



[A] matrix of partial derivatives (see eq. (43))

Bs orbit parameter (see eq. (51))

f35 parameter in equation (39)

[B] diagonal matrix of Bj parameters
g;;:gii} cofactors of inner matrix of equation (61)
[cov E] covariance matrix of orbit parameters

e orbit eccentricity

E orbit parameter (see eqs. (30) and (43))

h orbit-angular-momentum vector

i orbit inclination

I1g, « .lg integrals as defined in equations (52) to (59)
Ij j diagonal elements of the information matrix
[Info] information matrix of orbit parameters

ky orbit parameter (see eq. (4))

K number of orbits

n mean anomaly rate

Q parameter in equation (36)

r radius

t time



tp time of pericenter passage

X,¥,2 planet-centered rectangular coordinates
I gravitational constant

v true anomaly

p range

p range rate

o standard deviation

o b standard deviation of range rate errors
v orbit parameter (see eq. (67))

w argument of periapsis

Q longitude of ascending node

Subscripts:

a semimajor axis

a orbit parameter, na sini

e eccentricity

ik indices

tp time of pericenter passage

w argument of periapsis

Matrix notation:

{ } column matrix
4



[ ] rectangular or square matrix

[ ]-1 inverse of matrix [ ]

T .
[ ] transpose of matrlx[ ]
A dot over a symbol denotes the derivative with respect to time.

PERTURBATION IN RANGE RATE CAUSED BY THE
ORBIT-ELEMENT VARIATIONS

The orbit-determination-accuracy derivations of this paper are based on small-
perturbation theory. In this section of the paper, approximate linear equations are
derived which relate the small perturbations in range rate to small changes in the orbit
parameters. In subsequent sections these small~-perturbation equations are used in a
weighted least-squares technique for calculating orbit-determination accuracy.

The study of range rate measurements of spacecraft motions in a distant stationary
orbit has been the subject of many authors. (See refs. 4 and 5.) The range rate equations
are generally developed by assuming that the effects of parallax may be neglected and by
using a plane normal to the line of observation for referencing the orbit orientation. The
choice of this particular reference plane simplifies the equations, since the range rate is
insensitive to rotations of the ascending node of the orbit about the line of observation.
The orbit elements are illustrated in the following sketch:

6\

—Spacecraft

X

Orbit )
Reference plane L z-axis

Tracking station



From observation of the sketch it can be deduced that the radar range to the space-

craft, with parallax neglected, is given by

p=r sini sin(v + w) + Ztracking station

(1)

Taking the time derivative of equation (1), with i and w assumed to be constants, gives

p=r%sinisin(v + w) + r sini cos(v + w)¥ + z
However, from the relations for a Keplerian orbit, r is expressed

. nae sin v . na(l+ec v
= rp - ha(l + e cos v)

|1 - e2 \11 - e2

then it may by substitution be developed that

., nasini .
p:——[e cos w + cos(V + w)| + Z

tracking station
\1 - e2

By using the relation

n = 1 1/25-3/2

and letting
M 1/2a' 1/2sin i

k{ =
\,1 - e2

it follows that

p= kl[e cos w + cos(v + w)] * Ziracking station

tracking station

(2)

®3)

(4)

(5)

Expanding p in a Taylor's series and neglecting terms of higher order yield an expres-
sion for the perturbation in range rate due to small perturbations in the orbit elements,

which is

Y 05 o iy iy
86=-Lra+Pai + 2P re + 22 Aw + 2P Av
9a i de dw ov

(6)



Since the component of the range rate due to the tracking-station motion is not a function
of the orbit elements with parallax neglected the following partial derivatives are
obtained:

k

w_ X
30" 2a[e cos w + cos(v + w)] (7
. k
 _ [cos w + e cos(V + w)} (8)
% 1-e2
—Zi—p = kq cot i[e cos w + cos(v + w)} (9)
% _ kl[-e sin w - sin(v + w)] (10)
ow
9 _ .
i kl[-sm(v + w)] (11)
Also letting
Ao -kq€ cos w B = i{l (12)
155 17 2a
ky{ cos w kie
1-e2 1-e2
Ag =kje coticos w Bg =kj coti (14)
A4 = —kle sin w B4 = -kl (15)
Ag =0 Bg = -ky (16)

equations (7) to (11) reduce to the form

z—g = A1 + By cos(V + w) (17)
g—g = Ag + By cos(V + w) (18)



_p_ A3 + B3 cos(V + w) (19)

9i

% . Ay + By sin(v + w) (20)

dw

%’2=A5 + Bg sin(v + w) (21)
v

where the Aj and B coefficients are constants for a given orbit.

The small-perturbation equation (eq. (6)) is repeated as
Ap = 8pAa+gpA1+ pAe+ pAw+ p

The perturbation in true anomaly Av may be transformed into a perturbation in

time by the relation

ov
Av = 5t At
Thus
. _ 3P 9p 8p 2p p By
Ap— Aa+8 A1+8eAe+8w w+8y8tAt (22)
For the Keplerian elliptical orbit
and

(23)

It is established in subsequent sections that, for a constant or zero error in the
time of the measurement, an interrelation exists between the effects of inclination and
semimajor-axis length which further reduces the number of parameters affecting the

range rate to four.



It can be seen from equations (7) and (9) that

8—P =-2a cot i %p (24)
9i 2a
Thus a small change Aa in the semimajor axis of the orbit produces the same perturba-
tion in the range rate as a change in the orbit inclination equal to - ﬁi—{. This makes

it impossible to determine, in some actual situations, whether a perfurbation in range rate
is due to a change in the orbit inclination or a change in the semimajor axis.

Equation (22) now becomes

AP ‘D(Aa - 2a coti Ai) + Ae + = 2 Aw + = op Atp (25)
ow 8tp
In equation (25) the perturbation of range rate is expressed in terms of the partial deriva-
tives with respect to the orbit elements which are most commonly used in orbit-
determination studies. However, the linear combination of parameters, Aa - 2a coti Ai,
is difficult to visualize. In some cases, it may be easier to use an alternate parameter,
na sin i, in the perturbation equations.

The first term on the right side of equation (25) can be expressed as the equality

®B(aa - 2a coti i) =— 28 Bmasini), oy oot Aj) (26)
9a d(na sin i) da

It can be deduced that

8(na sin i) _ 92a cot i 8(na sin i) 21
9i 2a
thus
A(na sini) = (Aa - 2a cot i Al,a(n—aail-?—l—) (28)
a
and combining equation (26) and equation (28) yields
3p _ . ap -
aa(Aa 2a cot i Ai) = Ba sind) A(na sin i) (29)

Because of the independence of the quantities na sini, e, w,and tp equation (25), by
use of equation (29), may be written in an alternate form as

: 9p p p 8P
Ap=_F_ A tp
P 5o sind) A(na sini) + £ Ae + = Aw + Btp A (30)



where from equation (3) it follows that

ap. _ - ecosw 1 cos(v + w) (31)
9(na sin i) Vl o2 Vl o2
which is of the form
% Ag + Bg cos(V + w) (32)
8(na sin i)
where Ag =£C8 Y and Bg = 1

\/1 - e2 V1 - e2‘

Equation (30) applies to the case where the perturbation in true anomaly is due
solely to the variation in the time of pericenter passage. In some cases, Av may be
due to any of several factors. Consider the case where the range rate is sampled at
prespecified times. The range rate measurements, sampled at prespecified times, cor-
respond indirectly to measurements made at specified values of v in the equation

3 2 . /1-e2
a’(l - e - v -
t= ( ) €S L 2 tan-1 i—e—tanz +tp (33)
i 1+ecosv 1 D) l1+e 2
-e
For this case, the perturbation At is given by
At =2t aq 4+ B Ac +-t— Aty
2a de p
From equation (33)
3t -t
ot _._( p) (34)
da 2a
and
at _ _3,3/2 \ll - e2gin V-Q (35)
de \[ﬁ l+ecosv
where

2O_ez_e(e+cosz/)

6= 1+ecosv (36)
1-e2

10



The corresponding perturbation equation (eq. (22)) for the range rate then takes the
form

Ap = 2 3022_1;_Aa+ @+ﬂ’ﬁz—aﬁt-Ae 8pA1+ p Aw ap aVAtp (37)
aa v ot 9a de dv ot de i 8 ot

The first two parenthetical expressions each contain two terms. The first term
represents the perturbations in range rate due to changes in the orbit parameters, if the
perturbations in true anomaly are neglected. The second term is the effect of perturba-

tions in true anomaly caused by changes in the orbit parameters. Let g-;—) represent the

first parenthetical expression in equation (37), that is
50 _3%p , Bp oyt (38)

Then it follows from equations (17), (23), and (34) that

x N 3t -t
? =Aq + By cos(v + w) + B5(1 + e cos V)zsin(v + w) (TEQ (39)
a a

where

-4 sin i

2
(a1 - 2]
or, in brief form, equation (39) becomes

A4 B[M} (40)

2a

By =

o:|o:
® [oq

-~

The definitions of the periodic quantities A and B are inferred from equation (39).

Similarly, let 2—‘; represent the second parenthetical expression in equation (37),
that is

~

3 _ 2 + 8p 3y dt (41)
de ©Ode Odv ot de
and from equations (18), (23), and (35) it follows that
—g—g = Ag + Bg cos(V + w) + Ag sin(v + w)sin ¥(1 + e cos V)Q (42)

11



where Q is defined in equation (36) and

1-e2

In equations (35) and (42) the Q term is included whereas it was inadvertently omitted
from equations (47b) and (50) in reference 3.

In equation (39) a secular term is now observed in the effects of the semimajor axis
which did not exist for the case of zero or constant perturbation in the time. The per-~
turbative effects of eccentricity are, however, nonsecular for both cases. The partial
derivatives given by equations (19), (20), (23), (39), and (42) are shown in figures 1to 5
for an orbit about Mars. (These figures are computer-generated plots.) The orbit ele-
ments for the Mars orbit are as follows:

B, KM e o v e e e e e e e e e e 5000.0
= 0.1000
i,radian . .. L L L L L e e e e e e e e e e e e e e 0.7000
28 - T 1 o 0.6000
tpsS€C L Lo 0.0000
Figure 1 shows the secular and nonsecular components of g—g. (See eq. (38).) The

ap . . . R .
nonsecular component EE is a simple cosine curve. This component gives the change

in the range rate due to changes in the semimajor axis, with true anomaly held constant,
and physically corresponds to range rate perturbations due to changes in a at prespeci-
9 2v 3t
dv o8t o9a
by a change in the period of the orbit due to the change in the semimajor axis. More
specifically, it is the result of measuring range rate on a time basis where there is a
secular perturbation in the true anomaly of the spacecraft.

fied values of true anomaly. The growth of the secular component is caused

Two components of the partial derivative of range rate with respect to the orbit -
eccentricity -:Z—e are shown in figure 2. The smaller component %g expresses the
e

range rate perturbations due to changes in eccentricity with true anomaly held constant.

The larger component 2p oy 8t is due to variations in true anomaly at the measurement

v ot de
sampling times as caused by a change in eccentricity. It can be deduced from figure 2

that the major effect of a change in eccentricity is the result of changes in the angular
speed of the spacecraft. The changes are periodic and nonsecular.

12



The partial derivative of range rate with respect to the orbit inclination shown in
figure 3 is a cosine curve of period equal to the orbit period and centered about the line

—Z,B = Ag. The cosine nature of the curve is evident from equation (19). The partial
i

derivative g_p_ shown in figure 4 is a sine curve centered about the line %l:j = A4 with
w

a period equal to the orbit period. The partial derivative of the range rate with respect
to time of pericenter passage is shown in figure 5. This curve is a plot of equation (23)
and shows the effect of holding the orbit parameters fixed and shifting the true anomaly
of the range rate measurement, at every point in orbit, corresponding to a unit increment

in time., The partial derivative _%p_ is, as expected, periodic but not of simple shape.
p

ACCURACY OF THE ORBIT PARAMETERS WITH RANGE RATE
MEASUREMENTS MADE EVERY DEGREE
OF TRUE ANOMALY

The accuracy of the orbit parameters, as determined from tracking data, may be
calculated by the method of weighted least squares. (See ref. 6.) In this method, the
perturbation equations or equations of condition are obtained which correspond to each
range rate measurement and can be written in the form

{Ab} - [a] {AE} (43)

where the matrix {Ab} is a column matrix of measured differences between the range
rate on the spacecraft's actual orbit and the corresponding values on the nominal orbit.
The elements of matrix [A] are partial derivatives of the range rate with respect to the

orbit parameters, and the elements of the column matrix {AE} are increments in the

orbit parameters. The information matrix, so called, is given by the equation

_ 1
vt = 454" Ta]
o
where o 5 is the standard deviation of the errors in the range rate measurements, which

are assumed to have a normal distribution and are uncorrelated. The general element of

[A]T[A] is given by

T

T 8p 3p
(A A). = > 44
ik 5 3(Parameter j) 8(Parameter k) (44)

13



If the observations are made every unit of true anomaly of the orbit, the approximation
for a large number of measurements can be written

V2 . .
(aTa),, = { 56 % dv (45)
I vy 8(Parameter j) 8(Parameter k)

From equation (45) the information matrix becomes

S' _QB.a_pdv § @_a_p dv g @Eﬂ dv S\ _aﬁﬂdy
v 93 83 v 83 8e v 83 dw Vasatp

(20bg, (23q (22,
v 14 14

de de de dw 3e oty
pe B s 03 N e
o o5 g 2 8 g, S“ B 8 g,
v 9w dw v ow 3tp
. ap 8p
Symmetric 5 == = dv
v Otp ¥tp

where

a4 =na sini

In the following development previously derived analytic expressions (egs. (18),
(19), (20), (23), and (32)) are used for the partial derivatives in equation (46) and the inte-
grations are performed to obtain analytic expressions for each element of the information
matrix. The information matrix is then inverted to obtain analytic expressions for ele-

ments of the covariance matrix, that is

feov £ - [insg) "2

Only the diagonal elements of the covariance matrix will be obtained. These elements are
the squares of the standard deviations of the errors in the orbit parameters. In deriving
the expressions for the accuracy of the orbit parameters, two cases will be considered.
The first case is for the range rate measurements made corresponding to prespecified
values of true anomaly. The second case is where the measurements are made at pre-

specified values of time.

14




Range Rate Measurements Made at Prespecified Values of True Anomaly

When range rate measurements are made at prespecified values of true anomaly,
the perturbation equation is equation (30) expressed as
. ¥ .~ 0P ap ap av
Ap=— A3 + = Ae + = Aw + ——
P =g 8 T2 2 T S T P
where a perturbation exists in true anomaly which corresponds to a constant time incre-
ment Atp. This corresponds to an error in the location of pericenter-passage time in
the true-anomaly time history. From equations (32), (18), (20), and (23), respectively,

z_f: = Ag + Bg cos(v + w) 47
a
? = Ag + B2 cos(v + w) (48)
e
% _ Ay + By sin(v + w) (49)
9w
3P _Bs(1 + e cos ¥)2Zsin(v + w) (50)
5
atp
where
B5 = By (51)
ad (1 - e2>

In the formation of the information matrix the following integrals are needed:

2Kn7
I1 =g cos(v+w)dv=0 (52)
0
2K7
Iy =§ sin(v + w) dv =0 (53)
0
2Kn
Ig = § sin?(v + w) dv = Krr (54)
0

15



2K
Iy =§ cos2(v + w) dv = Krr
0
2K7w 9
I =§ sin(v + w) (1 + e cos »)? dv = 2Kre sin w
0
2K7
Ig =5 sin2(v + w) (1 + e cos v)2 dv =-I§1ﬂ<4 +e2 + 2ezsin2a9
0

2
%e_ sin w cos w

2K 9
I =§ sin(v + w) cos(v + w) (1 + e cos V) dv =
0

2Kn 2 4 4
Ig =S‘ sin2(v + w) (1 + e cos ¥ av = Kfn[l + 3% + % + éez - %)sinsz
0

(55)

(56)

(57)

(58)

(59)

where K denotes the number of revolutions of the argument v. Actually, K corre-

sponds to the number of orbits over which the measurements are made.

By substituting

equations (47) to (50) into equation (46) and using equations (52) to (59), the information

matrix becomes

. (2A22 . B22> K 2A9A4Km  AgBsls + BaBsly
ey 2 2 = -
0 2A4° + B4 K7 A4B5I5 + B4B516
. — 2
Symmetric B5 Ig

However, from equations (13), (15), and (32)

16

B2 CcOos w
Ao =g

A4 = Bye sinw

A6 = Bge cos w

-
(2 A + 1362> K1 <2A6A2 + BGBz) Kr  2AgA4Km  AgBsls + BgBsly

—

-

(60)



and by substitution, equation (60) becomes

—
e2cosw +—;‘- cos2w +% e2sin w cos w g e?sin w cos w _}
2c0s2w + 1 ; 2 )
e~4cos w+§ sin w cos w T+ls1nwcosw
pci A R N
p P ezsinzw + l _5_ ezsinzw + £4+_~e_
2 4 8
Symmetric L[(8 +12e2 + e4) + (24e2 - e4) sinZu,J
L 16

where the matrix [B] is a diagonal matrix of values Bj, Bg, By, and -]55 or Bg,
Bg, B4, and Bsg, depending on whether the solution is for Aa - 2a coti Ai or

A(na sin i). As previously mentioned, inverting the information matrix yields the covar-
iance matrix, the diagonal elements of which are the squares of the standard deviations
of the errors in the orbit parameters. In order to invert the information matrix of equa-

tion (61), only the inner matrix has to be inverted. The determinant of the inner matrix
is given by

2 l- 6 44 - 2
det = 005’4 w]_(e + l4e 5 31e® + 16) - (Se6 - 10e + 5e2> sin2w (62)

Note that the value of the determinant as well as the numeric condition of the infor-
mation matrix is independent of the number of revolutions that the orbit is tracked, since
K is not involved in the elements of the inner matrix.

The cofactors of the inner matrix are given by

2 -2
Cqq = & sin2w + £ cos2w +-1 1 8 + 12e2 4+ e4) + (24€2 - e4>sin2w
11712 2 4/16

2 2 2
+(&2 + 1) sin2w cosw|2 e2sinZw +le— +1) - (&2 + 1)e2sindw
4 2 2\4 4

2
2
- (e"zcoszw +%><§ e2sinw + 4 ;e ) (63)

17



2
Coo = €2 + 1 Ll(8 + 12¢2 + e4) + (24e2 - e4)sin2w + edsinw cos2w|[22
22 4/ 16 16

2
2 2
L Baxet 25 (2.2, 1)(5 2502 L 21 E0
2 8 32 2/\4 8

2 2 -2
Css =£0_f6_°2 <e?+e_2_ - 1)[8 +12e2 + et ¢ (24e2 - e4)sin2w]

+ sinzw‘:l0<e2 + 4>e2 <cos2w + %) - 25e4<e’2c0s2w +%>
2
- (ez + 4) <ezcos2w + l>]
2
2

C44 = (e’z + e2 - 2)002 w

By letting

-1/2
— (27K x 57.295

R
c F‘,Z/det

(64)

(65)

(66)

(67)

and using equations (63) to (66) the square roots of the diagonal elements of the covariance
matrix — that is, the standard deviations of the errors in the orbit parameters — can be

expressed as

1

oz ®¥Bg "\C11

Oe zEBZ_l \ICE
w SEB‘}-I ch

18
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The limits on the integrals used to obtain equation (61) were expressed in radians. The
constant 57.295 in equation (67) converts these limits to degrees since the summations
being approximated (eq. (44)) are in degrees.

Equations (68) to ('71) express the accuracies of the orbit parameters after tracking
the spacecraft for K revolutions with a range rate measurement made every degree of
true anomaly. A systematic error in the true anomaly, corresponding to a constant time
increment, is considered to be solved for and it is assumed that no portion of the orbit is
occulted. Equations (68) to (71) can be used for other measurement schedules by applica-
tion of a correction proportional to the inverse square root of the number of observations.
(See ref. 17.)

Considerable simplification of these expressions can be obtained by dropping the
higher order terms in eccentricity for orbits where the eccentricity is much less than 1.
Also, simplifications can be obtained for specific values of the argument of periapsis such
as 09, 452, or 90°. For w = 909, however, the determinant of equation (62) becomes
singular and the partial derivatives —Z—E—, —giﬁ, and S sin D (naaéoi =) are linearly related. (See
egs. (8), (9), and (32).) The independent orbit parameters, in this case, become

.. By
na sini +T3_(_3 Ae, w,and tp.

It might be noted that some corrections have been made in equations (60) to (71) as

compared to the corresponding equations in reference 3. However, the computed results

of reference 3 correspond to the corrected equations of this paper.

For the case where there is no systematic error in the true anomaly, the perturba-
tion equation becomes

Ap = __ % A(na sin i) + bp Ae + %p Aw (72)
8(na sin i) de dw

and the information matrix (eq. (61)) becomes

B 7]
ezcoszw +% coszw +% e2sin w cos w
e‘zcoszw +-;- sin w cos w
1 T ~ 2K7
= Al =227
(4[4 ~=5 (8] B @
P p ezsinzw + -1-
2
Symmetric
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In equation (73), only the effects of the range-rate-measurement error are con-
sidered in computing the information matrix. The effect on the range rate of a random
error in the true anomaly of the measurement, if considered, could be approximated by

changes in the value of 0[) to account for both error sources.

The uncertainties of the orbit parameters are obtained by inversion of the preceding
information matrix (eq. (73)). By using the method of cofactors, the diagonal elements of
the covariance matrix are obtained, and the square roots of the diagonal elements (which
are the standard deviations of the orbit parameters) are thus given by

= -1\le~2coslw + ezsinzu; + 1
Ona sini ~ ¥Bg 5 (74)

— . 2
0 ® ¥Bg 1\ ,2L4+_1 (75)
_— . 2 -2
Oy = B4 I\Foszw@— + e_2_ - 1> (76)

where
-1/2
_Al_; _ 2K7m X 57.295
cpz/det
and
-2 2 _ 2
det = (e +e 2>cos w 77)

4

Range Rate Measurements Made at Prespecified Values of Time

In orbit-determination techniques, range rate measurements are usually made at
prespecified values of time. For this case, the perturbation equation (eq. (37)) becomes

. 9p 30 3 . 9P 8p oV
=P 9P pe 4 2P 9P 9 ov
Ap oa Aa + 56 A€ * 5 Ai + 50 Aw + T Aty ('78)

for which the diagonal elements Ijj of the information matrix become

2

i 2K7 ,
O 8p
114 = 0.2 2P1g

H P SO (83) ’ (79)
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2K7m, A2
coa2\ (284
Igg =0y <8e> v (80)

0
I35 = 0,2 §§K<_p>2d (81)
I44 = op‘z g:KW@—Z-)de (82)
Is5 =~ o'ﬁ.)—z ngW@_ﬁ)zdv (83)

By substituting equations (19), (20), (21), (39), and (42) in equations (79) to (83), the
square roots of the diagonal elements of the covariance matrix are given in the following
equations for the case where the off-diagonal elements of the information matrix are
assumed to be zero:

360K 5)-1/2
oy ® ol_:)"z Z [Al + B1 cos(v + w) +—23; ]§5(1 + e cos v)zsin(v + w)('il] (84)
v=1
where
- 3(1 - [;_ ; ./
i = Ia (1 -e2)| -esinv . 2 tan-1 \Il e ian Y ity
7 l‘l +ecos v D) 1+e 2
\ll -e
-1/2
360 9 1/
Op © Kob"z Z [Az + Bg cos(v + w) + Z&5 sin(v + w)sin v(1 + e cos V)ﬁ] (85)
v=1
where
6=2-e2_ e [ ecosv
1 -~ e2 1_e2\1+ecosv
-1/2
~ 2 2 1 z-1
0; ® 05[2K77B1 (ezcos w +§> X 57.295} (2a cot 1) (86)

21



-1/2
oy = oﬁ{ZKﬂB‘lz(eZsinzw + -%) X 5'7.295] (87)

-1/2
op ~4do. 2K'n§52 8 + 12e2 + e4) +(24e2 - e4)sin2w X 57.295 (88)
p p

It might be mentioned that for range rate measured at prespecified values of time five of
the orbit elements are determinable, whereas for range rate measured at prespecified
values of true anomaly only four orbit parameters could be determined. For the range
rate measurements made at prespecified values of time, the partial derivatives and the
information matrix obtained through the use of equations (19), (20), (23), (39), (42),

and (44) are compared in table I with the secant-method results, which were obtained by
finite differencing equations (3) and (33), and using equation (23), to obtain the partial
derivatives (eq. (3'7)) that were applied in equation (44). The necessary relation between
v and t was obtained from Kepler's equation.

SUMMARY OF RESULTS

Equations for calculating orbit-determination accuracy were derived for inertially
fixed orbits about distant bodies. This condition is realized only for binary stars but is
closely approximated over short time periods for orbits about the Moon and the planets.
Analysis of the results computed by using the stationary-orbit techniques would be indica-
tive of the orbit-determination results computed by using short data arcs on slowly
varying orbits.

Analytic expressions for uncertainty in the orbit elements were derived by assuming
that a measurement was made every degree of true anomaly. These expressions could be
used for many other measurement schedules by application of a correction given by the
inverse square root of the number of observations.

Secular terms appeared in the partial derivative of range rate with respect to the

~

semimajor axis EB when measurements were considered to be made at prespecified
a

values of time; however, the other partial derivatives remained periodic. The secular

component of -g—e was shown to be much larger than the nonsecular component by the end
a

of the first revolution of the orbit. The main effect of measuring range rate at prespec~
ified values of time is an improvement in the accuracy of determination of the semimajor
axis and the eccentricity. This is largely caused by the variations in true anomaly of
the spacecraft at given times with changes in semimajor axis and eccentricity. I
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measurements are sampled at prespecified values of true anomaly, the numeric condition
of the information matrix does not vary with the number of complete orbits tracked; how-

ever, if the range rate measurements are made at prespecified values of time, the
numeric condition is affected by the number of orbits tracked. It was shown that only
three of the orbit parameters can be determined if the measurements are made with no
systematic error in the prespecified values of true anomaly. For this case, all partial
derivatives and residuals in the differential correction process are composed of sine and
cosine curves of period of the orbit and the process is linear. However, it is not likely
that measurements will be made at prespecified values of true anomaly on a distant orbit.
Making measurements at prespecified values of time is operationally feasible and also
permits determination of five of the orbit elements.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., May 7, 1970.
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TABLE I.- COMPARISON OF ANALYTIC AND SECANT-METHOD PARTIAL
DERIVATIVES AND INFORMATION MATRIX

9p/%a

[Measurements made at prespecified times]

(a) Partial derivatives at 270° true anomaly

0/ e

op/o1 |

'Analytic method

Secant method

ap/ow l

ag/btp

~2.46661707E-03] ~1.47424969E+00| 1.4585233TE+00 |1.45950649E+00 | -9.32603735E-04

-2.46654641E-03| -1.47413033E+00| 1.45846323E+00| 1.45944432E+00 | -9.32571518E-04

(b) Information matrix (measurement every degree for 360°)

Analytic method:

[ 4.16525965E+06

1.21396297E+09
-1.16732222E+09
-3.35333990E+09
| 1.99564975E+06

Secant method:

™ 4.19999914E+06

1.24167263E+09
-1.13480466E+09
-3.37119924E+09
| 2.00731723E+06

1.21396297E+09
4.61695670E+12
4,65639996E+11
1.20256341E+11
-7.20949554E+07

1.24167263E+09
4.63899313E+12
4.91269987E+11
1.05961572E+11
-6.27601418E+07

-1.16732222E+09
4.65639996E+11
6.40560986E+12

-3.33031794E+10
2.62833005E+07

~-1.13480466E+09
4.91269987E+11
6.48476644E+12
-5.01100596E+10
3.72468989E+0"7

-3.35333990E+09
1.20256341E+11
-3.33031794E+10
4.52367742E+12
-2.70325479E+09

-3.37119924E+09
1.05961572E+11
-5.01100596E+10
4.53288956E+12
~2.70927273E+09

1.99564975E+08]
-7.20949554E+07
2.62833005E+07
-2.70325479E+09
1.63135912E+06)

2.00731728E+08]
-6.27601418E+07
3.72468989E+07
-2.70927273E+09

1.63529086E+06]
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Figure 1.- Partial derivative of range rate with respect to changes in semimajor axis.
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Partial derivative, km/sec
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Figure 2.- Partial derivative of range rate with respect to changes in eccentricity.
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Partial derivative, km/sec/radian
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Figure 3.- Partial derivative of range rate with respect to changes in inciination,



Partial derivative, km/sec/radian
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Figure 4.- Partial derivative of range rate with respect to changes in argument of pericenter.
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Partial derivative, km/sec/sec
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Figure 5.- Partial derivative of range rate with respect to changes in time of pericenter passage.
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